Genome-Wide Investigation of N6-Methyladenosine Regulatory Genes and Their Roles in Tea (Camellia sinensis) Leaves During Withering Process

Author:

Zhu Chen,Zhang Shuting,Zhou Chengzhe,Xie Siyi,Chen Guangwu,Tian Caiyun,Xu Kai,Lin Yuling,Lai Zhongxiong,Guo Yuqiong

Abstract

N6-methyladenosine (m6A), one of the internal modifications of RNA molecules, can directly influence RNA abundance and function without altering the nucleotide sequence, and plays a pivotal role in response to diverse environmental stresses. The precise m6A regulatory mechanism comprises three types of components, namely, m6A writers, erasers, and readers. To date, the research focusing on m6A regulatory genes in plant kingdom is still in its infancy. Here, a total of 34 m6A regulatory genes were identified from the chromosome-scale genome of tea plants. The expansion of m6A regulatory genes was driven mainly by whole-genome duplication (WGD) and segmental duplication, and the duplicated gene pairs evolved through purifying selection. Gene structure analysis revealed that the sequence variation contributed to the functional diversification of m6A regulatory genes. Expression pattern analysis showed that most m6A regulatory genes were differentially expressed under environmental stresses and tea-withering stage. These observations indicated that m6A regulatory genes play essential roles in response to environmental stresses and tea-withering stage. We also found that RNA methylation and DNA methylation formed a negative feedback by interacting with each other’s methylation regulatory genes. This study provided a foundation for understanding the m6A-mediated regulatory mechanism in tea plants under environmental stresses and tea-withering stage.

Funder

Earmarked Fund for China Agriculture Research System

Fujian Agriculture and Forestry University

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3