Polar-Net: Green fruit instance segmentation in complex orchard environment

Author:

Jia Weikuan,Liu Jie,Lu Yuqi,Liu Qiaolian,Zhang Ting,Dong Xishang

Abstract

High-quality orchard picking has become a new trend, and achieving the picking of homogeneous fruit is a huge challenge for picking robots. Based on the premise of improving picking efficiency of homo-chromatic fruit in complex environments, this paper proposes a novel homo-chromatic fruit segmentation model under Polar-Net. The model uses Densely Connected Convolutional Networks (DenseNet) as the backbone network, Feature Pyramid Network (FPN) and Cross Feature Network (CFN) to achieve feature extraction and feature discrimination for images of different scales, regions of interest are drawn with the help of Region Proposal Network (RPN), and regression is performed between the features of different layers. In the result prediction part, polar coordinate modeling is performed based on the extracted image features, and the instance segmentation problem is reduced to predict the instance contour for instance center classification and dense distance regression. Experimental results demonstrate that the method effectively improves the segmentation accuracy of homo-chromatic objects and has the characteristics of simplicity and efficiency. The new method has improved the accuracy of segmentation of homo-chromatic objects for picking robots and also provides a reference for segmentation of other fruit and vegetables.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference38 articles.

1. Recognition and localization of ripen tomato based on machine vision;Arefi;Aust. J. Crop Sci.,2011

2. Yolact: Real-time instance segmentation;Bolya,2019

3. A tutorial on the cross-entropy method;De Boer;Ann. Operations Res.,2005

4. Application of consumer RGB-d cameras for fruit detection and localization in field: A critical review;Fu;Comput. Electron. Agric.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3