Three amino acid residues are required for the recognition of Ralstonia solanacearum RipTPS in Nicotiana tabacum

Author:

An Yuyan,Chen Jialan,Xu Zhangyan,Ouyang Xue,Cao Peng,Wang Rongbo,Liu Peiqing,Zhang Meixiang

Abstract

Ralstonia solanacearum causes devastating diseases in a wide range of economically important crops. It secretes a large number of virulence factors, also known as effectors, to promote its infection, and some of them are recognized when the host plant contains corresponding resistance genes. In this study we showed that a type III effector RipTPS from the avirulent R. solanacearum strain GMI1000 (RipTPSG) specifically induced cell death in Nicotiana tabacum, but not in Nicotiana benthamiana, whereas the RipTPS homolog in the virulent strain CQPS-1 (RipTPSC) induced cell death in neither N. tabacum nor N. benthamiana. These results indicated that RipTPSG is recognized in N. tabacum. Expression of RipTPSG induced upregulation of hypersensitive response (HR) -related genes in N. tabacum. The virulence of CQPS-1 was reduced when RipTPSG was genetically introduced into CQPS-1, further confirming that RipTPSG functions as an avirulence determinant. Protein sequence alignment indicated that there are only three amino acid polymorphisms between RipTPSG and RipTPSC. Site-directed mutagenesis analyses confirmed that the three amino acid residues are jointly required for the recognition of RipTPSG in N. tabacum. Expression of either RipTPSG or RipTPSC suppressed flg22-triggered reactive oxygen species (ROS) burst in N. benthamiana, suggesting that RipTPS contributes to pathogen virulence. Mutating the conserved residues in RipTPS’s trehalose-phosphate synthase (TPS) domain did not block its HR induction and defense suppression activity, indicating that the TPS activity is not required for RipTPS’s avirulence and virulence function.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3