Genetic variation for effects of drought stress on yield formation traits among commercial soybean [Glycine max (L.) Merr.] cultivars adapted to Ontario, Canada

Author:

Gebre Michael Gebretsadik,Rajcan Istvan,Earl Hugh James

Abstract

Drought stress significantly limits soybean [Glycine max (L.) Merr.] yields in Ontario, Canada. Many studies of genetic variation for drought tolerance compare commercial lines with exotic, unadapted germplasm. We hypothesized that even current commercial cultivars adapted to Ontario would differ significantly for traits related to drought tolerance. In a greenhouse experiment, we grew fifteen soybean cultivars in field soil amended with sand in 1-m rooting columns, which allowed for simulation of field-like soil water profiles and rooting depths. Two watering treatments were imposed from the first flower until maturity by daily restoration of soil water to either 100% (control), or 50% (drought stress) of the maximum soil water holding capacity. Throughout the experiment, we measured volumetric soil water content at different depths in the soil profile, but found no evidence at any developmental stage that the cultivars differed for their ability to extract soil water from different depths. Drought stress reduced seed yield by 51% on average. Similar to the effects of drought in the field, pod number was the yield component most affected, with effects on seeds per pod and single-seed weight being comparatively minor. There were significant cultivar × treatment interactions for seed yield, pod number, shoot dry matter, and water use. We identified two drought-sensitive (Saska and OAC Drayton) and three drought-tolerant (OAC Lakeview, OAC Champion, and PRO 2715R) cultivars based on their ratios of seed yield under drought stress to seed yield under control conditions (seed yield ratio, SYR). Regression and principal component analyses revealed that drought-tolerant (high-SYR) cultivars were consistently those that maintained relatively high values for water use, biomass accumulation and pod number under drought stress; high water use efficiency under drought stress was also associated with a high SYR. One of the cultivars, OAC Lakeview, displayed a distinct mode of drought tolerance, maintaining a very high fraction of its control pod number under drought stress. This study helps define the physiological basis of soybean cultivar differences in drought tolerance, and provides direction for soybean breeders to select traits that could improve yield under drought stress.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3