The quantification of root exudation by an in-situ method based on root morphology over three incubation periods

Author:

Zhang Chengfu,Cai Yinmei,Zhao Qingxia,He Tengbing,Mao Tianxu,Zhang Tao,Zhang Limin,Su Weici

Abstract

Investigating the quantity and spatiotemporal dynamics of metabolite release from plant roots is essential if we are to understand the ecological significance of root exudates in the rhizosphere; however, this is difficult to quantify. In the present study, we quantified in situ root exudation rates during three incubation periods (0–24, 24–48, and 48–72 h) and fine roots within four diameter ranges (<0.8, 0.8–1.0, 1.0–1.2, and 1.2–2.0 mm), and also measured nine morphological traits in the fine roots of Pinus massoniana. Higher root carbon (C) exudation rates were detected during the 0–24 h period. During the 0–24 h and 24–48 h periods, nitrogen (N) uptake rates were higher than N exudation rates, while during the 48–72 h period, N exudation rates exceeded uptake rates. As C exudation increased during 0–48h incubation period, the uptake of N tended to level out. We concluded that the 24–48 h incubation period was the most suitable for capturing root exudates from P. massoniana. The exudation of C from the roots was positively associated with root mass, length, surface area, volume, the number of root tips, and the root tissue density, when incubated for 0–24 h and 24–48 h. Furthermore, length-specific C exudation rates, along with N exudation and uptake rates, all increased as the diameter of the fine roots increased. The release of root exudates could be efficiently predicted by the fine root morphological traits, although the accuracy of prediction depended on the incubation period. Higher values for fine root morphological traits were generally indicative of higher nutrient requirements and tissue investment, as well as higher C exudation rates.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3