Real-time citrus variety detection in orchards based on complex scenarios of improved YOLOv7

Author:

Deng Fuqin,Chen Jianle,Fu Lanhui,Zhong Jiaming,Qiaoi Weilai,Luo Jialong,Li Junwei,Li Nannan

Abstract

Variety detection provides technical support for selecting XinHui citrus for use in the production of XinHui dried tangerine peel. Simultaneously, the mutual occlusion between tree leaves and fruits is one of the challenges in object detection. In order to improve screening efficiency, this paper introduces a YOLO(You Only Look Once)v7-BiGS(BiFormer&GSConv) citrus variety detection method capable of identifying different citrus varieties efficiently. In the YOLOv7-BiGS network model, initially, the BiFormer attention mechanism in the backbone of the YOLOv7-based network strengthens the model’s ability to extract citrus’ features. In addition, the introduction of the lightweight GSConv convolution in place of the original convolution within the ELAN of the head component effectively streamlines model complexity while maintaining performance integrity. To environment challenge validate the effectiveness of the method, the proposed YOLOv7-BiGS was compared with YOLOv5, YOLOv7, and YOLOv8. In the comparison of YOLOv7-BiGS with YOLOv5, YOLOv7, and YOLOv8, the experimental results show that the precision, mAP and recell of YOLOv7-BiGS are 91%, 93.7% and 87.3% respectively. Notably, compared to baseline methods, the proposed approach exhibited significant enhancements in precision, mAP, and recall by 5.8%, 4.8%, and 5.2%, respectively. To evaluate the efficacy of the YOLOv7-BiGS in addressing challenges posed by complex environmental conditions, we collected occluded images of Xinhui citrus fruits from the Xinhui orchard base for model detection. This research aims to fulfill performance criteria for citrus variety identification, offering vital technical backing for variety detection endeavors.

Publisher

Frontiers Media SA

Reference29 articles.

1. Dynamic visual servo control methods for continuous operation of a fruit harvesting robot working throughout an orchard;Chen;Comput. Electron. Agric.,2024

2. Run, don’t walk: chasing higher FLOPS for faster neural networks;Chen,2023

3. A multiscale lightweight and efficient model based on YOLOv7: Applied to citrus orchard;Chen;Plants,2022

4. Citrus fruits maturity detection in natural environments based on convolutional neural networks and visual saliency map;Chen;Precis. Agric.,2022

5. R-fcn: Object detection via region-based fully convolutional networks;Dai,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3