Limited-Distance Pollen Dispersal and Low Paternal Diversity in a Bird-Pollinated Self-Incompatible Tree

Author:

Xiang Wen-Qian,Malabrigo Pastor L.,Tang Liang,Ren Ming-Xun

Abstract

Bird pollination in Asia is regarded as an uncommon phenomenon and, therefore, only a few investigations on mating pattern and paternity in fruits of Asian bird-pollinated plants have been conducted. Here, we examined spatial genetic structure, pollen dispersal, and multiple paternity in a natural population of Bombax ceiba (B. ceiba) (Malvaceae) in Hainan Island, South China, using simple sequence repeat (SSR) markers. A low genetic diversity (He = 0.351 ± 0.0341 and 0.389 ± 0.043, respectively, for adults and offspring) and bottleneck effects were observed. Genetic kinship was significant within 400 m or in 1,800–3,800 m. Both the mating pattern and paternity analysis confirmed obligate xenogamy and a low multiple paternity in B. ceiba. There was a strongly negative relationship between the frequency of matings and the distance between mating pairs. The average pollen dispersal distance was 202.89 ± 41.01 m (mean ± SE) and the farthest distance of > 1 km was recorded. Realized mating events showed an extremely leptokurtic distribution within 1,200 m, suggesting that the pollen dispersal distance was consistent with the optimal foraging theory of generalist birds such as Zosterops spp. and Pycnonotus spp. Paternity per tree ranged from two to six and the average effective number of pollen donors per maternal plant was 3.773, suggesting a low level of paternity diversity as compared to other bird-pollinated plants. We concluded that optimal foraging behavior by generalist birds could explain the leptokurtic pollen dispersal distribution and predominantly near-neighbor matings in B. ceiba. The limited pollen dispersal distance and low multiple paternity were consistent with low fruit setting rate (3.27 ± 0.93%) in this self-incompatible tree, which was caused mainly by the restricted flight distance of birds and human disturbances. Low genetic diversity and significant spatial genetic structure might have largely resulted from logging and human collection of fruits.

Funder

National Natural Science Foundation of China

Hainan Provincial Department of Science and Technology

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3