Effects of Litter and Root Manipulations on Soil Bacterial and Fungal Community Structure and Function in a Schrenk’s Spruce (Picea schrenkiana) Forest

Author:

Zhu Haiqiang,Gong Lu,Luo Yan,Tang Junhu,Ding Zhaolong,Li Xiaochen

Abstract

Soil microorganisms are the key driver of the geochemical cycle in forest ecosystem. Changes in litter and roots can affect soil microbial activities and nutrient cycling; however, the impact of this change on soil microbial community composition and function remain unclear. Here, we explored the effects of litter and root manipulations [control (CK), doubled litter input (DL), litter removal (NL), root exclusion (NR), and a combination of litter removal and root exclusion (NI)] on soil bacterial and fungal communities and functional groups during a 2-year field experiment, using illumina HiSeq sequencing coupled with the function prediction platform of PICRUSt and FUNGuild. Our results showed that litter and root removal decreased the diversity of soil bacteria and fungi (AEC, Shannon, and Chao1). The bacterial communities under different treatments were dominated by the phyla Proteobacteria, Acidobacteria, and Actinomycetes, and NL and NR reduced the relative abundance of the first two phyla. For the fungal communities, Basidiomycetes, Ascomycota, and Mortierellomycota were the dominant phyla. DL increased the relative abundance of Basidiomycetes, while NL and NR decreased the relative abundance of Ascomycota. We also found that litter and root manipulations altered the functional groups related to the metabolism of cofactors and vitamins, lipid metabolism, biosynthesis of other secondary metabolites, environmental adaptation, cell growth, and death. The functional groups including ectomycorrhizal, ectomycorrhizal-orchid mycorrhizal root-associated biotrophs and soil saprotrophs in the fungal community were also different among the different treatments. Soil organic carbon (SOC), pH, and soil water content are important factors driving changes in bacterial and fungal communities, respectively. Our results demonstrate that the changes in plant detritus altered the soil microbial community structure and function by affecting soil physicochemical factors, which provides important data for understanding the material cycle of forest ecosystems under global change.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3