An integrated method for phenotypic analysis of wheat based on multi-view image sequences: from seedling to grain filling stages

Author:

Sun Shengxuan,Zhu Yeping,Liu Shengping,Chen Yongkuai,Zhang Yihan,Li Shijuan

Abstract

Wheat exhibits complex characteristics during its growth, such as extensive tillering, slender and soft leaves, and severe organ cross-obscuration, posing a considerable challenge in full-cycle phenotypic monitoring. To address this, this study presents a synthesized method based on SFM-MVS (Structure-from-Motion, Multi-View Stereo) processing for handling and segmenting wheat point clouds, covering the entire growth cycle from seedling to grain filling stages. First, a multi-view image acquisition platform was constructed to capture image sequences of wheat plants, and dense point clouds were generated using SFM-MVS technology. High-quality dense point clouds were produced by implementing improved Euclidean clustering combined with centroids, color filtering, and statistical filtering methods. Subsequently, the segmentation of wheat plant stems and leaves was performed using the region growth segmentation algorithm. Although segmentation performance was suboptimal during the tillering, jointing, and booting stages due to the glut leaves and severe overlap, there was a salient improvement in wheat leaf segmentation efficiency over the entire growth cycle. Finally, phenotypic parameters were analyzed across different growth stages, comparing automated measurements of plant height, leaf length, and leaf width with actual measurements. The results demonstrated coefficients of determination (R2) of 0.9979, 0.9977, and 0.995; root mean square errors (RMSE) of 1.0773 cm, 0.2612 cm, and 0.0335 cm; and relative root mean square errors (RRMSE) of 2.1858%, 1.7483%, and 2.8462%, respectively. These results validate the reliability and accuracy of our proposed workflow in processing wheat point clouds and automatically extracting plant height, leaf length, and leaf width, indicating that our 3D reconstructed wheat model achieves high precision and can quickly, accurately, and non-destructively extract phenotypic parameters. Additionally, plant height, convex hull volume, plant surface area, and Crown area were extracted, providing a detailed analysis of dynamic changes in wheat throughout its growth cycle. ANOVA was conducted across different cultivars, accurately revealing significant differences at various growth stages. This study proposes a convenient, rapid, and quantitative analysis method, offering crucial technical support for wheat plant phenotypic analysis and growth dynamics monitoring, applicable for precise full-cycle phenotypic monitoring of wheat.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3