Initial Description of the Genome of Aeluropus littoralis, a Halophile Grass

Author:

Hashemi-Petroudi Seyyed Hamidreza,Arab Mozhdeh,Dolatabadi Behnaz,Kuo Yi-Tzu,Baez Mariana Alejandra,Himmelbach Axel,Nematzadeh Ghorbanali,Maibody Seyed Ali Mohammad Mirmohammady,Schmutzer Thomas,Mälzer Michael,Altmann Thomas,Kuhlmann Markus

Abstract

The use of wild plant species or their halophytic relatives has been considered in plant breeding programs to improve salt and drought tolerance in crop plants. Aeluropus littoralis serves as halophyte model for identification and isolation of novel stress adaptation genes. A. littoralis, a perennial monocot grass, grows in damp or arid areas, often salt-impregnated places and wasteland in cultivated areas, can survive periodically high water salinity, and tolerate high salt concentrations in the soil up to 1,100 mM sodium chloride. Therefore, it serves as valuable genetic resource to understand molecular mechanisms of stress-responses in monocots. The knowledge can potentially be used for improving tolerance to abiotic stresses in economically important crops. Several morphological, anatomical, ecological, and physiological traits of A. littoralis have been investigated so far. After watering with salt water the grass is able to excrete salt via its salt glands. Meanwhile, a number of ESTs (expressed sequence tag), genes and promoters induced by the salt and drought stresses were isolated, sequenced and annotated at a molecular level. Transfer of stress related genes to other species resulted in enhanced stress resistance. Here we describe the genome sequence and structure of A. littoralis analyzed by whole genome sequencing and histological analysis. The chromosome number was determined to be 20 (2n = 2x = 20). The genome size was calculated to be 354 Mb. This genomic information provided here, will support the functional investigation and application of novel genes improving salt stress resistance in crop plants. The utility of the sequence information is exemplified by the analysis of the DREB-transcription factor family.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3