Plant-Mediated Rhizosphere Oxygenation in the Native Invasive Salt Marsh Grass Elymus athericus

Author:

Koop-Jakobsen Ketil,Meier Robert J.,Mueller Peter

Abstract

In the last decades, the spread of Elymus athericus has caused significant changes to the plant community composition and ecosystem services of European marshes. The distribution of E. athericus was typically limited by soil conditions characteristic for high marshes, such as low flooding frequency and high soil aeration. However, recently the spread of E. athericus has begun to also include low-marsh environments. A high-marsh ecotype and a low-marsh ecotype of E. athericus have been described, where the latter possess habitat-specific phenotypic traits facilitating a better adaption for inhabiting low-marsh areas. In this study, planar optodes were applied to investigate plant-mediated sediment oxygenation in E. athericus, which is a characteristic trait for marsh plants inhabiting frequently flooded environments. Under waterlogged conditions, oxygen (O2) was translocated from aboveground sources to the roots, where it leaked out into the surrounding sediment generating oxic root zones below the sediment surface. Oxic root zones were clearly visible in the optode images, and no differences were found in the O2-leaking capacity between ecotypes. Concentration profiles measured perpendicular to the roots revealed that the radius of the oxic root zones ranged from 0.5 to 2.6 mm measured from the root surface to the bulk anoxic sediment. The variation of oxic root zones was monitored over three consecutive light–dark cycles (12 h/12 h). The O2 concentration of the oxic root zones was markedly reduced in darkness, yet the sediment still remained oxic in the immediate vicinity of the roots. Increased stomatal conductance improving the access to atmospheric O2 as well as photosynthetic O2 production are likely factors facilitating the improved rhizosphere oxygenation during light exposure of the aboveground biomass. E. athericus’ capacity to oxygenate its rhizosphere is an inheritable trait that may facilitate its spread into low-marsh areas. Furthermore, this trait makes E. athericus a highly competitive species in marshes facing the effects of accelerated sea-level rise, where waterlogged sediment conditions could become increasingly pronounced.

Funder

Helmholtz Association

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3