Super-resolution reconstruction, recognition, and evaluation of laser confocal images of hyperaccumulator Solanum nigrum endocytosis vesicles based on deep learning: Comparative study of SRGAN and SRResNet

Author:

Li Wenhao,He Ding,Liu Yongqiang,Wang Fenghe,Huang Fengliang

Abstract

It is difficult for laser scanning confocal microscopy to obtain high- or ultra-high-resolution laser confocal images directly, which affects the deep mining and use of the embedded information in laser confocal images and forms a technical bottleneck in the in-depth exploration of the microscopic physiological and biochemical processes of plants. The super-resolution reconstruction model (SRGAN), which is based on a generative adversarial network and super-resolution reconstruction model (SRResNet), which is based on a residual network, was used to obtain single and secondary super-resolution reconstruction images of laser confocal images of the root cells of the hyperaccumulator Solanum nigrum. Using the peak signal-to-noise ratio (PSNR), structural similarity (SSIM) and mean opinion score (MOS), the models were evaluated by the image effects after reconstruction and were applied to the recognition of endocytic vesicles in Solanum nigrum root cells. The results showed that the single reconstruction and the secondary reconstruction of SRGAN and SRResNet improved the resolution of laser confocal images. PSNR, SSIM, and MOS were clearly improved, with a maximum PSNR of 47.690. The maximum increment of PSNR and SSIM of the secondary reconstruction images reached 21.7% and 2.8%, respectively, and the objective evaluation of the image quality was good. However, overall MOS was less than that of the single reconstruction, the perceptual quality was weakened, and the time cost was more than 130 times greater. The reconstruction effect of SRResNet was better than that of SRGAN. When SRGAN and SRResNet were used for the recognition of endocytic vesicles in Solanum nigrum root cells, the clarity of the reconstructed images was obviously improved, the boundary of the endocytic vesicles was clearer, and the number of identified endocytic vesicles increased from 6 to 9 and 10, respectively, and the mean fluorescence intensity was enhanced by 14.4% and 7.8%, respectively. Relevant research and achievements are of great significance for promoting the application of deep learning methods and image super-resolution reconstruction technology in laser confocal image studies.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3