Dynamic interplay of WRKY, GRAS, and ERF transcription factor families in tomato-endophytic fungal symbiosis: insights from transcriptome and genome-wide analysis

Author:

Khan Ibrahim,Lubna ,Asaf Sajjad,Jan Rahmatullah,Bilal Saqib,Khan Abdul Latif,Kim Kyung-Min,Al-Harrasi Ahmed

Abstract

Plant-microbe interactions play a crucial role in shaping plant growth and development, as well as in mediating plant responses to biotic and abiotic stresses. In this study, we used RNA-seq data to examine the expression profiles of SlWRKY, SlGRAS, and SlERF genes during the symbiotic association of Curvularia lunata SL1 with tomato (Solanum lycopersicum) plants. We also conducted functional annotation analysis by comparative genomics studies of their paralogs and orthologs genes, as well as other approaches, such as gene analysis and protein interaction networks, to identify and characterize the regulatory roles of these TFs in the development of the symbiotic association. We found that more than half of the investigated SlWRKY genes exhibited significant upregulation during symbiotic association, including SlWRKY38, SlWRKY46, SlWRKY19, and SlWRKY51. Several SlGRAS and SlERF genes were upregulated, such as SlGLD2, SlGLD1, SlERF.C.5, ERF16, and SlERF.B12. Conversely, a smaller proportion of SlWRKY, SlGRAS, and SlERF genes were significantly downregulated during symbiotic association. Furthermore, we investigated the possible roles of SlWRKY, SlGRAS, and SlERF genes in hormonal regulation during plant-microbe interactions. We identified several upregulated candidate transcripts likely to be involved in plant hormone signaling pathways. Our findings are consistent with previous studies on these genes, providing further evidence of their involvement in hormonal regulation during plant-microbe interactions. To validate the RNA-seq data accuracy, we performed RT-qPCR analyses of selected SlWRKY, SlGRAS, and SlERF genes, which showed similar expression patterns to those observed in the RNA-seq data. These results confirmed the accuracy of our RNA-seq data and provided additional support for the differential expression of these genes during plant-microbe interactions. Taken together, our study provides new insights into the differential expression profiles of SlWRKY, SlGRAS, and SlERF genes during symbiotic association with C. lunata, as well as their potential roles in hormonal regulation during plant-microbe interactions. These findings could be useful for guiding future research on the ways in which plants and microbes interact, and may ultimately lead to the creation of better approaches for promoting plant growth under stressful conditions.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3