Genomic prediction and allele mining of agronomic and morphological traits in pea (Pisum sativum) germplasm collections

Author:

Crosta Margherita,Romani Massimo,Nazzicari Nelson,Ferrari Barbara,Annicchiarico Paolo

Abstract

Well-performing genomic prediction (GP) models for polygenic traits and molecular marker sets for oligogenic traits could be useful for identifying promising genetic resources in germplasm collections, setting core collections, and establishing molecular variety distinction. This study aimed at (i) defining GP models and key marker sets for predicting 15 agronomic or morphological traits in germplasm collections, (ii) verifying the GP model usefulness also for selection in breeding programs, (iii) investigating the consistency between molecular and phenotypic diversity patterns, and (iv) identifying genomic regions associated with to the target traits. The study was based on phenotyping data and over 41,000 genotyping-by-sequencing-generated SNP markers of 220 landraces or old cultivars belonging to a world germplasm collection and 11 modern cultivars. Non-metric multi-dimensional scaling (NMDS) and an analysis of population genetic structure indicated a high level of genetic differentiation of material from Western Asia, a major West-East diversity gradient, and quite limited genetic diversity of the improved germplasm. Mantel’s test revealed a low correlation (r = 0.12) between phenotypic and molecular diversity, which increased (r = 0.45) when considering only the molecular diversity relative to significant SNPs from genome-wide association analyses. These analyses identified, inter alia, several areas of chromosome 6 involved in a largely pleiotropic control of vegetative or reproductive organ pigmentation. We found various significant SNPs for grain and straw yield under severe drought and onset of flowering, and one SNP on chromosome 5 for grain protein content. GP models displayed moderately high predictive ability (0.43 to 0.61) for protein content, grain and straw yield, and onset of flowering, and high predictive ability (0.76) for individual seed weight, based on intra-population, intra-environment cross-validations. The inter-population, inter-environment assessment of the models trained on the germplasm collection for breeding material of three recombinant inbred line (RIL) populations, which was challenged by much narrower diversity of the material, over eight-fold less available markers and quite different test environments, led to an overall loss of predictive ability of about 40% for seed weight, 50% for protein content and straw yield, and 60% for onset of flowering, and no prediction for grain yield. Within-RIL population predictive ability differed among populations.

Funder

Ministero delle Politiche Agricole Alimentari e Forestali

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3