Field pest monitoring and forecasting system for pest control

Author:

Liu Chengkang,Zhai Zhiqiang,Zhang Ruoyu,Bai Jingya,Zhang Mengyun

Abstract

Insect pest is an essential factor affecting crop yield, and the effect of pest control depends on the timeliness and accuracy of pest forecasting. The traditional method forecasts pest outbreaks by manually observing (capturing), identifying, and counting insects, which is very time-consuming and laborious. Therefore, developing a method that can more timely and accurately identify insects and obtain insect information. This study designed an image acquisition device that can quickly collect real-time photos of phototactic insects. A pest identification model was established based on a deep learning algorithm. In addition, a model update strategy and a pest outbreak warning method based on the identification results were proposed. Insect images were processed to establish the identification model by removing the background; a laboratory image collection test verified the feasibility. The results showed that the proportion of images with the background completely removed was 90.2%. Dataset 1 was obtained using reared target insects, and the identification accuracy of the ResNet V2 model on the test set was 96%. Furthermore, Dataset 2 was obtained in the cotton field using a designed field device. In exploring the model update strategy, firstly, the T_ResNet V2 model was trained with Dataset 2 using transfer learning based on the ResNet V2 model; its identification accuracy on the test set was 84.6%. Secondly, after reasonably mixing the indoor and field datasets, the SM_ResNet V2 model had an identification accuracy of 85.7%. The cotton pest image acquisition, transmission, and automatic identification system provide a good tool for accurately forecasting pest outbreaks in cotton fields.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference40 articles.

1. Prototype spatio-temporal predictive system of pest development of the codling moth, Cydia pomonella, in kazakhstan.;Afonin;Hellenic Plant Prot. J.,2020

2. Deep learning based classification for paddy pests & diseases recognition;Alfarisy;Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence,2018

3. Improving CNN-Based Pest Recognition with a Post-Hoc Explanation of XAI

4. A remote real-time acquisition system for rice plant hopper images in the fields.;Chen;J. Hum. Agric. Univ. (Nat. Sci.),2016

5. An entire-and-partial feature transfer learning approach for detecting the frequency of pest occurrence.;Chen;IEEE Access,2020

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3