Manipulation of Barley Development and Flowering Time by Exogenous Application of Plant Growth Regulators

Author:

Kupke Brendan M.,Tucker Matthew R.,Able Jason A.,Porker Kenton D.

Abstract

Matching flowering time to the optimal flowering period in Mediterranean cropping zones is pivotal to maximize yield. Aside from variety selection and sowing date, growers have limited options to alter development in season. Plant hormones and growth regulators are used in perennial horticultural systems to manipulate development and floral initiation. In this study, a range of plant hormonal products were tested to analyze their effects on barley (Hordeum vulgare L) development by exogenous spray applications. Plants were grown in controlled conditions under long and short photoperiods with different vernalization treatments. The gibberellin (GA) products demonstrated the greatest potential for altering development. The GA inhibitor trinexapac-ethyl was able to delay the time to flowering in genetically divergent barley cultivars by up to 200 degree days under controlled conditions. A similar delay in flowering could be achieved via application at both early (GS13) and late (GS33) stages, with higher rates delaying flowering further. Notably, trinexapac-ethyl was able to extend the duration of pre-anthesis phases of development. By contrast, GA3 was unable to accelerate development under extreme short (8 h) or long (16 h) day lengths. There was also little evidence that GA3 could reproducibly accelerate development under intermediate 10–12 h day lengths. In addition, sprays of the cytokinin 6-benzyladenine (6-BA) were unable to reduce the vernalization requirement of the winter genotype Urambie. The present study provides baseline data for plant growth regulator treatments that delay cereal development. These treatments might be extended in field studies to align flowering of early sown crops to the optimal flowering period.

Funder

Grains Research and Development Corporation

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3