Automatic detection of standing dead trees based on improved YOLOv7 from airborne remote sensing imagery

Author:

Zhou Hongwei,Wu Shangxin,Xu Zihan,Sun Hong

Abstract

Detecting and localizing standing dead trees (SDTs) is crucial for effective forest management and conservation. Due to challenges posed by mountainous terrain and road conditions, conducting a swift and comprehensive survey of SDTs through traditional manual inventory methods is considerably difficult. In recent years, advancements in deep learning and remote sensing technology have facilitated real-time and efficient detection of dead trees. Nevertheless, challenges persist in identifying individual dead trees in airborne remote sensing images, attributed to factors such as small target size, mutual occlusion and complex backgrounds. These aspects collectively contribute to the increased difficulty of detecting dead trees at a single-tree scale. To address this issue, the paper introduces an improved You Only Look Once version 7 (YOLOv7) model that incorporates the Simple Parameter-Free Attention Module (SimAM), an unparameterized attention mechanism. This improvement aims to enhance the network’s feature extraction capabilities and increase the model’s sensitivity to small target dead trees. To validate the superiority of SimAM_YOLOv7, we compared it with four widely adopted attention mechanisms. Additionally, a method to enhance model robustness is presented, involving the replacement of the Complete Intersection over Union (CIoU) loss in the original YOLOv7 model with the Wise-IoU (WIoU) loss function. Following these, we evaluated detection accuracy using a self-developed dataset of SDTs in forests. The results indicate that the improved YOLOv7 model can effectively identify dead trees in airborne remote sensing images, achieving precision, recall and mAP@0.5 values of 94.31%, 93.13% and 98.03%, respectively. These values are 3.67%, 2.28% and 1.56% higher than those of the original YOLOv7 model. This improvement model provides a convenient solution for forest management.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3