Plant community assembly is jointly shaped by environmental and dispersal filtering along elevation gradients in a semiarid area, China

Author:

Zheng Jie,Arif Muhammad,He Xinrui,Ding Dongdong,Zhang Songlin,Ni Xilu,Li Changxiao

Abstract

Environmental filtering (EF) and dispersal filtering (DF) are widely known to shape plant community assembly. Particularly in arid and semi-arid mountainous regions, however, it remains unclear whether EF or DF dominate in the community assembly of different life forms or how they interact along elevational gradients. This research aims to reveal how different ecological processes influence herbaceous and woody community assembly and how they respond to various environmental drivers and elevational gradients. Here we integrated taxonomic diversity (TD), phylogenetic diversity (PD), and ecological drivers across an elevational gradient of 1,420 m in the Helan Mountain Nature Reserve, in typical arid and semi-arid areas of China. This study showed that the TD and PD of herbaceous communities significantly increase linearly with changing elevation gradients, while woody ‘TD’ showed a unimodal pattern, and there was little relationship between woody ‘PD’ and elevation. Herbaceous species exhibited significant phylogenetic clustering at low elevations, where they were influenced by climate, aspect, and tree cover. However, woody species exhibited random patterns across elevations. Herbaceous and woody species’ taxonomic and phylogenetic beta diversity is governed primarily by spatial turnover rather than nestedness. Spatial turnover is caused primarily by EF and DF’s combined influence, but their relative importance differs between herbaceous and woody communities. Therefore, we conclude that the responses of herbaceous and woody plants along elevation gradients in the Helan Mountains are decoupled due to their different adaptation strategies to climate factors in the drylands. These findings are important for understanding the assembly mechanisms driving plant communities in dryland under the context of dramatic increases in drought driven by climate warming.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3