Nitrogen and phosphorous dynamics with stand development of Pinus massoniana plantations in Southeast China

Author:

Guo Wen,Jiao Pengyu,Lopez C M. Larry,Chen Zelong,Wei Lili,Liu Xian,Hu Yalin,Wang Yuzhe

Abstract

IntroductionNutrient resorption is a key mechanism to conserve nutrients and overcome nutrient limitation in perennial plants. As an important afforested tree species in subtropical regions, Pinus massoniana grows well in nutrient-poor environments, however, the age-related pattern of nutrient acquisition strategy and the underlying mechanisms in P. massoniana plantations remain unclear.MethodsIn this study, concentrations of nitrogen (N) and phosphorus (P) were measured in green and senesced needles, roots and soil samples collected from P. massoniana plantations with different stand ages (9-, 17-, 26-, 34- and 43-year-old) in south China. From these samples, nutrient resorption efficiency (RE) and stoichiometry were calculated.ResultsNeedle PRE significantly decreased with stand age, while there was no clear pattern of NRE along the stand development. Green needle N:P in older stands was significantly lower than in younger ones. Senesced needle C:P and N:P significantly decreased with stand age. Root and soil available P concentrations were significantly higher in older stands than in younger ones, and PRE was negatively correlated with soil available P concentration.DiscussionThere was a shift from “conservative consumption” to “resource spending” P-use strategy, and P limitation decreased with stand development of P. massoniana plantations. The results provide information of changes in nutrients dynamics, which is relevant for the sustainable management of subtropical forest plantations.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3