Identification and characterization of putative targets of VEGETATIVE1/FULc, a key regulator of development of the compound inflorescence in pea and related legumes

Author:

Serra-Picó Marcos,Hecht Valérie,Weller James L.,Benlloch Reyes,Madueño Francisco

Abstract

Inflorescence architecture contributes to essential plant traits. It determines plant shape, contributing to morphological diversity, and also determines the position and number of flowers and fruits produced by the plant, thus influencing seed yield. Most legumes have compound inflorescences, where flowers are produced in secondary inflorescences (I2), formed at the flanks of the main primary inflorescence (I1), in contrast to simple inflorescences of plants like Arabidopsis, in which flowers are directly formed on the I1. The pea VEGETATIVE1/FULc (VEG1) gene, and its homologs in other legumes, specify the formation of the I2 meristem, a function apparently restricted to legumes. To understand the control of I2 development, it is important to identify the genes working downstream of VEG1. In this study, we adopted a novel strategy to identify genes expressed in the I2 meristem, as potential regulatory targets of VEG1. To identify pea I2-meristem genes, we compared the transcriptomes of inflorescence apices from wild-type and mutants affected in I2 development, such as proliferating inflorescence meristems (pim, with more I2 meristems), and veg1 and vegetative2 (both without I2 meristems). Analysis of the differentially expressed genes using Arabidopsis genome databases combined with RT-qPCR expression analysis in pea allowed the selection of genes expressed in the pea inflorescence apex. In situ hybridization of four of these genes showed that all four genes are expressed in the I2 meristem, proving our approach to identify I2-meristem genes was successful. Finally, analysis by VIGS (virus-induced gene silencing) in pea identified one gene, PsDAO1, whose silencing leads to small plants, and another gene, PsHUP54, whose silencing leads to plants with very large stubs, meaning that this gene controls the activity of the I2 meristem. PsHUP54-VIGS plants are also large and, more importantly, produce large pods with almost double the seeds as the control. Our study shows a new useful strategy to isolate I2-meristem genes and identifies a novel gene, PsHUP54, which seems to be a promising tool to improve yield in pea and in other legumes.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3