Genome-Wide Association Study to Identify Candidate Loci for Biomass Formation Under Water Deficit in Perennial Ryegrass

Author:

Jaškūnė Kristina,Aleliūnas Andrius,Statkevičiūtė Gražina,Kemešytė Vilma,Studer Bruno,Yates Steven

Abstract

Global warming is predicted to impact many agricultural areas, which will suffer from reduced water availability. Due to precipitation changes, mild summer droughts are expected to become more frequent, even in temperate regions. For perennial ryegrass (Lolium perenne L.), an important forage grass of the Poaceae family, leaf growth is a crucial factor determining biomass accumulation and hence forage yield. Although leaf elongation has been shown to be temperature-dependent under normal conditions, the genetic regulation of leaf growth under water deficit in perennial ryegrass is poorly understood. Herein, we evaluated the response to water deprivation in a diverse panel of perennial ryegrass genotypes, employing a high-precision phenotyping platform. The study revealed phenotypic variation for growth-related traits and significant (P < 0.05) differences in leaf growth under normal conditions within the subgroups of turf and forage type cultivars. The phenotypic data was combined with genotypic variants identified using genotyping-by-sequencing to conduct a genome-wide association study (GWAS). Using GWAS, we identified DNA polymorphisms significantly associated with leaf growth reduction under water deprivation. These polymorphisms were adjacent to genes predicted to encode for phytochrome B and a MYB41 transcription factor. The result obtained in the present study will increase our understanding on the complex molecular mechanisms involved in plant growth under water deficit. Moreover, the single nucleotide polymorphism (SNP) markers identified will serve as a valuable resource in future breeding programs to select for enhanced biomass formation under mild summer drought conditions.

Funder

Lietuvos Mokslo Taryba

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3