Exploring plant responses to abiotic stress by contrasting spectral signature changes

Author:

Estrada Félix,Flexas Jaume,Araus Jose Luis,Mora-Poblete Freddy,Gonzalez-Talice Jaime,Castillo Dalma,Matus Ivan A.,Méndez-Espinoza Ana Maria,Garriga Miguel,Araya-Riquelme Carlos,Douthe Cyril,Castillo Benjamin,del Pozo Alejandro,Lobos Gustavo A.

Abstract

In this study, daily changes over a short period and diurnal progression of spectral reflectance at the leaf level were used to identify spring wheat genotypes (Triticum aestivum L.) susceptible to adverse conditions. Four genotypes were grown in pots experiments under semi-controlled conditions in Chile and Spain. Three treatments were applied: i) control (C), ii) water stress (WS), and iii) combined water and heat shock (WS+T). Spectral reflectance, gas exchange and chlorophyll fluorescence measurements were performed on flag leaves for three consecutive days at anthesis. High canopy temperature (HCT) genotypes showed less variability in their mean spectral reflectance signature and chlorophyll fluorescence, which was related to weaker responses to environmental fluctuations. While low canopy temperature (LCT) genotypes showed greater variability. The genotypes spectral signature changes, in accordance with environmental fluctuation, were associated with variations in their stomatal conductance under both stress conditions (WS and WS+T); LCT genotypes showed an anisohydric response compared that of HCT, which was isohydric. This approach could be used in breeding programs for screening a large number of genotypes through proximal or remote sensing tools and be a novel but simple way to identify groups of genotypes with contrasting performances.

Funder

Agencia Nacional de Investigación y Desarrollo

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3