Genetic Dissection of Early Blight Resistance in Tetraploid Potato

Author:

Xue Weiya,Haynes Kathleen G.,Clarke Christopher R.,Qu Xinshun

Abstract

Early blight, caused by the fungus Alternaria solani, is one of the most economically important diseases of potatoes worldwide. We previously identified a tetraploid potato clone, B0692-4, which is resistant to early blight. To dissect the genetic basis of early blight resistance in this clone, a full-sib tetraploid potato population including 241 progenies was derived from a cross between B0692-4 and a susceptible cultivar, Harley Blackwell, in this study. The population was evaluated for foliage resistance against early blight in field trials in Pennsylvania in 2018 and 2019 and relative area under the disease progress curve (rAUDPC) was determined. The distribution of rAUDPC ranged from 0.016 to 0.679 in 2018, and from 0.017 to 0.554 in 2019. Broad sense heritability for resistance, as measured as rAUDPC, was estimated as 0.66–0.80. The population was also evaluated for foliar maturity in field trials in Maine in 2018 and 2020. A moderate negative correlation between rAUDPC and foliar maturity was detected in both years. A genetic linkage map covering a length of 1469.34 cM with 9124 SNP markers was used for mapping quantitative trait loci (QTL) for rAUDPC and foliar maturity. In 2018, three QTLs for early blight were detected; two of them on chromosome 5 overlapped with QTLs for maturity, and one of them on chromosome 7 was independent of maturity QTL. In 2019, six QTLs for early blight were detected; two QTLs on chromosome 5 overlapped with QTLs for maturity, and the other four QTLs did not overlap with QTLs for maturity. The identification of these QTLs provides new insight into the genetic basis of early blight resistance and may serve as sources for marker-assisted selection for early blight resistance breeding.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3