Abscisic acid-polyacrylamide (ABA-PAM) treatment enhances forage grass growth and soil microbial diversity under drought stress

Author:

Tang Xue,Fei Xueting,Sun Yining,Shao Huanhuan,Zhu Jinyu,He Xinyi,Wang Xiaoyan,Yong Bin,Tao Xiang

Abstract

Drought restricts the growth of alpine grassland vegetation. This study aimed to explore a new technical system to improve the drought resistance of forage grass. Qinghai cold-land Poa pratensis seedlings were used in the drought stress experiment. A combination of abscisic acid (ABA) and polyacrylamide (PAM) were used to affect the growth, leaf physiology, soil enzyme activity, and rhizosphere microbial diversity of P. pratensis. The fresh leaf weight and root surface area were significantly increased after ABA-PAM combined treatment, while root length was significantly reduced. Besides, the leaf catalase (CAT) and superoxide dismutase (SOD) enzyme activity, proline and chlorophyll content, increased after the treatment, while malondialdehyde (MDA) content decreased. The treatment also increased sucrase, urease, and alkaline protease activities in rhizosphere soil, while decreasing acid phosphatase and neutral phosphatase enzyme activities. ABA-PAM combined treatment enhanced the rhizosphere microbial community and forage drought resistance by altering the abundance of various dominant microorganisms in the rhizosphere soil. The relative abundances of Actinobacteria, Chloroflexi, and Acidobacteria decreased, while Proteobacteria, Firmicutes, and Ascomycota increased. Unlike the relative abundance of Gibberella that decreased significantly, Komagataeibacter, Lactobacillus, Pichia, and Dekkera were significantly increased. Single-factor collinearity network analysis revealed a close relationship between the different rhizosphere microbial communities of forage grass, after ABA-PAM treatment. This study implies that ABA-PAM combined treatment can improve the drought resistance of forages. Therefore, it provides a theoretical and practical basis for restoring drought-induced grassland degradation.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3