Biomass Allocation Responses to Root Interactions in Wheat Cultivars Support Predictions of Crop Evolutionary Ecology Theory

Author:

Zhu Yong-He,Weiner Jacob,Jin Yi,Yu Ming-Xi,Li Feng-Min

Abstract

The goal of agriculture is to optimize the population yield, but natural selection has produced active competition among plants, which decreases population performance. Therefore, cultivar breeding should be based on group selection, increasing yield by weakening individual competitive responses. We hypothesize that this has occurred inadvertently to some degree, so modern cultivars have weakened competitive traits and responses, such as reduced root proliferation in response to neighboring roots. We conducted a field experiment with eight cultivars of spring wheat that have been released over the last hundred years, which we grew at two densities. Two contrasting wheat cultivars, a landrace and a modern cultivar, were used in a second field experiment on competition within and between the two cultivars to quantify their competitiveness. Finally, a greenhouse experiment was conducted with these two cultivars gown (a) in mixture and monoculture, (b) at four densities, (c) two watering levels, and (d) with permeable vs. non-permeable soil dividers, to study root proliferation responses to competition. Results of field experiment 1 showed that the population aboveground biomass (AGB) had increased, while belowground biomass had decreased over the course of breeding, so that the root to shoot ratio (R/S) was negatively correlated with the release year of the cultivar. The landrace had stronger competitiveness than the modern cultivar in the field experiment 2. There was clear evidence of root proliferation and a resultant reduction in AGB in response to neighboring roots in the greenhouse experiment, and the modern variety showed less root proliferation in response to neighbors. We conclude that the newer cultivar was a weaker competitor but higher-yielding in two ways: (1) it had higher reproductive effort and therefore less allocation to structures that increase competitive ability, and (2) it had reduced root proliferation in response to the roots of neighboring plants. Our results show that wheat plants change their biomass allocation in response to resource levels and the presence of neighboring roots. The presence of root proliferation in the modern cultivar, albeit less than in the landrace, suggests that further increases in yield via group selection are possible.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3