Physiological mechanism of melatonin attenuating to osmotic stress tolerance in soybean seedlings

Author:

Jahan Mohammad Shah,Zhao Chang Jiang,Shi Li Bo,Liang Xiu Ren,Jabborova Dilfuza,Nasar Jamal,Zhou Xun Bo

Abstract

Drought is one of the most significant abiotic stress threatening to crop production worldwide. Soybean is a major legume crop with immense economic significance, but its production is highly dependent on optimum rainfall or abundant irrigation. As the global climate changes, it is more important to find solutions to make plants more resilient to drought. The prime aimed of the study is to investigate the effect of melatonin on drought tolerance in soybean and its potential mechanisms. Soybean seedlings were treated with 20% polyethylene glycol 6000 (PEG 6000) and subjected to osmotic stress (14 days) with or without 100 μM melatonin treatment. Our results revealed that melatonin supplementation significantly mitigated PEG-induced growth retardation and increased water absorption ability. Foliar application of melatonin also increased gas exchange and the chlorophyll fluorescence attributes by the mitigation of the osmotic-induced reduction of the reaction activity of photosystems I and II, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), electron transport activity, and photosynthetic efficiency. In addition, PEG-induced elevated production of reactive oxygen species (ROS) and malondialdehyde (MDA) content were significantly reversed by melatonin treatment. Equally important, melatonin boosted the antioxidant activities of soybean plants. Moreover, osmotic stress substantially increased abscisic acid (ABA) accumulation in roots and leaves, while melatonin-received plant leaves accumulated less ABA but roots content higher ABA. Similarly, melatonin significantly suppressed ABA biosynthesis and signaling gene expression in soybean exposed to drought stress. Furthermore, osmotic stress significantly suppressed plasmalemma (GmPIPs) and tonoplast aquaporin (GmTIPs) genes expression, and their transcript abundance was up-regulated by melatonin co-addition. Taken together, our results indicated that melatonin potentially improves drought tolerance of soybean through the regulation of ABA and aquaporin gene expression, increasing photosynthetic efficiency as well as enhancing water uptake efficiency.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3