A win-win scenario for photosynthesis and the plasma membrane H+ pump

Author:

Kinoshita Satoru N.,Kinoshita Toshinori

Abstract

In plants, cytosolic and extracellular pH homeostasis are crucial for various physiological processes, including the uptake of macronutrients and micronutrients, cell elongation, cell expansion, and enzyme activity. Proton (H+) gradients and the membrane potential are generated by a H+ pump consisting of an active primary transporter. Plasma membrane (PM) H+-ATPase, a PM-localized H+ pump, plays a pivotal role in maintaining pH homeostasis in plant cells and extracellular regions. PM H+-ATPase activity is regulated by protein abundance and by post-translational modifications. Several stimuli have been found to activate the PM H+-ATPase through phosphorylation of the penultimate threonine (Thr) of the carboxy terminus. Light- and photosynthesis-induced phosphorylation of PM H+-ATPase are conserved phenomena among various plant species. In this work, we review recent findings related to PM H+-ATPase regulation in the photosynthetic tissues of plants, focusing on its mechanisms and physiological roles. The physiological roles of photosynthesis-dependent PM H+-ATPase activation are discussed in the context of nitrate uptake and cytoplasmic streaming in leaves.

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3