Pollinator sharing between reproductively isolated genetic lineages of Silene nutans

Author:

Cornet Camille,Noret Nausicaa,Van Rossum Fabienne

Abstract

High reciprocal pollination specialization leading to pollinator isolation can prevent interspecific pollen transfer and competition for pollinators. Sharing pollinators may induce mating costs, but it may also increase pollination services and pollen dispersal and offer more resources to pollinators, which may be important in case of habitat fragmentation leading to pollination disruption. We estimated pollen dispersal and pollinator isolation or sharing between two reproductively isolated genetic lineages of Silene nutans (Caryophyllaceae), which are rare and occur in parapatry in southern Belgium, forming two edaphic ecotypes. As inter-ecotypic crosses may lead to pollen wastage and inviable progeny, pollinator isolation might have evolved between ecotypes. Silene nutans is mainly pollinated by nocturnal moths, including nursery pollinators, which pollinate and lay their eggs in flowers, and whose caterpillars feed on flowers and seeds. Pollinator assemblages of the two ecotypes are largely unknown and inter-ecotypic pollen flows have never been investigated. Fluorescent powdered dyes were used as pollen analogues to quantify intra- and inter-ecotypic pollen transfers and seeds were germinated to detect chlorotic seedlings resulting from inter-ecotypic pollination. Nocturnal pollinators were observed using infrared cameras on the field, and seed-eating caterpillars were collected and reared to identify nursery pollinator species. No pollinator isolation was found: we detected long-distance (up to 5 km) inter-ecotypic dye transfers and chlorotic seedlings, indicating inter-ecotypic fertilization events. The rare moth Hadena albimacula, a nursery pollinator specialized on S. nutans, was found on both ecotypes, as well as adults visiting flowers (cameras recordings) as seed-eating caterpillars. However, S. nutans populations harbor different abundance and diversity of seed predator communities, including other rare nursery pollinators, suggesting a need for distinct conservation strategies. Our findings demonstrate the efficiency of moths, especially of nursery pollinators, to disperse pollen over long distances in natural landscapes, so to ensure gene flow and population sustainability of the host plant. Seed-predator specificities between the two reproductively isolated genetic lineages of S. nutans, and pollinator sharing instead of pollinator isolation when plants occur in parapatry, suggest that conservation of the host plant is also essential for sustaining (rare) pollinator and seed predator communities.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3