Mineralization mechanism of organic carbon in maize rhizosphere soil of soft rock and sand mixed soil under different fertilization modes

Author:

Guo Zhen,Han Jichang,Zhang Yang,Wang Huanyuan

Abstract

IntroductionThis article endeavors to investigate the influence of various fertilization methods on the characteristics of rhizosphere soil and organic carbon mineralization in the mixed soil of Mu Us Sandy land under maize cultivation, with the objective of laying the groundwork for low-carbon agriculture and the development of high-quality farmland.MethodsThe research focuses on soft rock and sand composite soil with a 1:2 ratio, and it comprises four treatments: no fertilization (CK), only chemical fertilization (CF), only cattle manure application (MF), and only oil residue application (DF).ResultsThe findings revealed that the use of organic fertilizer substantially elevated nutrient content and enzyme activity in the maize rhizosphere soil. Furthermore, it had a notable influence on both soil aggregate diameter and stability. Specifically, the DF treatment led to a significant increase in both soil aggregate diameter and stability. The mineralization rate of organic carbon in the maize rhizosphere soil could be categorized into two distinct phases: a rapid initial decline followed by a slower release. By the end of the incubation period, the cumulative mineralization of organic carbon in the MF, DF, and CF treatments showed a significant increase of 119.87%, 57.57%, and 24.15%, respectively, in comparison to the CK treatment. Additionally, the mineralization rate constants of the DF and MF treatments experienced a substantial rise, with increments of 23.52% and 45.97%, respectively, when contrasted with the CK treatment. The bacterial phyla Actinobacteriota, Proteobacteria, Chloroflexi, Acidobacteriota, and Firmicutes were dominant in the rhizosphere soil bacterial community. Specific genera such as Nocardioides and Sphingomonas showed significant correlations with organic carbon mineralization. The application of different organic fertilizer can improve soil physical, chemical and biological properties, and promote the mineralization process of organic carbon in maize rhizosphere soil.DiscussionNotably, the DF treatment exhibited the most favorable outcome, improving the overall quality of maize rhizosphere soil while incurring a minimal loss of unit organic carbon. These findings hold significant implications for optimizing field management practices and augmenting soil quality.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3