Irrigation modulates the effect of increasing temperatures under climate change on cotton production of drip irrigation under plastic film mulching in southern Xinjiang

Author:

Wang Hongbo,Yin Zi,Zhang Lei,Zhao Fengnian,Huang Weixiong,Wang Xingpeng,Gao Yang

Abstract

IntroductionWarming and drought brought about by climate change seriously harm sustainable agricultural production in southern Xinjiang. It is still unclear how irrigation can improve the ability of crops to cope with climate change.MethodsTherefore, in this study, we calibrated and validated the AquaCrop model using data collected in cotton production from 2017 to 2018. The model effectively simulated the growth, biomass, and yield of cotton plants at the experimental site under different warming and irrigation conditions. The meteorological data collected from 1987 to 2016 were used in a simulation to predict cotton production under 3 temperature scenarios (temperature increased by 0°C, 1°C, and 2°C) and 6 levels of irrigation (198, 264, 330, 396, 495, and 594 mm) to explain the modulating effect of plastic film mulching-coupled drip irrigation on cotton production in terms of increasing temperatures under climate change in southern Xinjiang.Results and discussionModel prediction showed that an increase in temperature reduced cotton yield under a low irrigation level, while an increase in irrigation mitigated the impact of climate change on cotton yield. An increase of 1°C did not significantly reduce cotton yield at 198–330 mm of irrigation. Under a 2°C increase, 396–594 mm of irrigation was required to ensure plant growth and yield formation. Both aboveground biomass and yield increased with the rise in the irrigation level at the same temperature. High water use efficiency was achieved at 495 mm of irrigation without significant yield loss. Therefore, in the low-temperature scenario, it can be preferentially considered to achieve sustainable water use through water management, while in the high-temperature scenario innovative agricultural measures are required to avoid yield loss. Optimizing irrigation strategies can reduce warming-induced damage to crops under climate change.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3