Individual vs. Combined Short-Term Effects of Soil Pollutants on Colony Founding in a Common Ant Species

Author:

Seidenath Dimitri,Holzinger Anja,Kemnitz Klara,Langhof Nico,Lücker Darleen,Opel Thorsten,Otti Oliver,Feldhaar Heike

Abstract

Insects are integral to terrestrial life and provide essential ecosystem functions such as pollination and nutrient cycling. Due to massive declines in insect biomass, abundance, or species richness in recent years, the focus has turned to find their causes. Anthropogenic pollution is among the main drivers of insect declines. Research addressing the effects of pollutants concentrates on aquatic insects and pollinators, despite the apparent risk of contaminated soils. Pollutants accumulating in the soil might pose a significant threat because concentrations tend to be high and different pollutants are present simultaneously. Here, we exposed queens of the black garden ant Lasius niger at the colony founding stage to different concentrations and combinations of pollutants (brake dust, soot, microplastic particles and fibers, manure) to determine dose-dependent effects and interactions between stressors. As proxies for colony founding success, we measured queen survival, the development time of the different life stages, the brood weight, and the number of offspring. Over the course of the experiment queen mortality was very low and similar across treatments. Only high manure concentrations affected the colony founding success. Eggs from queens exposed to high manure concentrations took longer to hatch, which resulted in a delayed emergence of workers. Also, fewer pupae and workers were raised by those queens. Brake dust, soot and plastic particles did not visibly affect colony founding success, neither as single nor as multiple stressors. The application of manure, however, affected colony founding in L. niger negatively underlining the issue of excessive manure application to our environment. Even though anthropogenic soil pollutants seem to have little short-term effects on ant colony founding, studies will have to elucidate potential long-term effects as a colony grows.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3