Bioinspired polyoxometalates as light-driven water oxidation catalysts

Author:

Sánchez-Lara Eduardo,Favela Roberto,Castillo Ivan

Abstract

The design of molecular systems with capabilities to carry out the water oxidation reaction and thereby overcome the bottleneck of artificial photosynthesis is one of the scientific fields of most significant interest and urgency due to its potential to address energy demand and climate change. Nevertheless, the search for efficient and robust catalysts has been limited by the degradation of carbon-based ligands under oxidative conditions, leading to the search for fully inorganic catalysts. Polyoxometalates (POMs), an emerging class of carbon-free ligands with oxygen-enriched surfaces, offer a unique alternative as inorganic scaffolds to self-assemble and stabilize transition-metal clusters with unique redox properties. Under catalytic working conditions, POMs can undergo electron transfer reactions coupled to O2 formation without modifying their parental structure. As a result, these materials have recently entered the scene as catalytic players in designing new artificial photosynthetic platforms for water oxidation. We focus on the methods used to create these compounds, their unique structural characteristics, and how effectively they function as catalysts. We also explore the proposed mechanisms behind their ability to produce O2 and their potential use in designing photosynthetic devices.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3