Author:
Sathiya E.,Rao T. D.,Kumar T. Sunil
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a neuropsychological disorder that occurs in children and is characterized by inattention, impulsivity, and hyperactivity. Early and accurate diagnosis of ADHD is very important for effective intervention. The aim of this study is to develop a computer-aided approach to detecting ADHD using electroencephalogram (EEG) signals. Specifically, we explore a Gabor filter-based statistical features approach for the classification of EEG signals into ADHD and healthy control (HC). The EEG signal is processed by a bank of Gabor filters to obtain narrow-band signals. Subsequently, a set of statistical features is extracted. The computed features are then subjected to feature selection. Finally, the obtained feature vector is given to a classifier to detect ADHD and HC. Our approach achieves the highest classification accuracy of 96.4% on a publicly available dataset. Furthermore, our approach demonstrates better classification accuracy than the existing methods.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献