Large-Scale Brain Functional Network Integration for Discrimination of Autism Using a 3-D Deep Learning Model

Author:

Yang Ming,Cao Menglin,Chen Yuhao,Chen Yanni,Fan Geng,Li Chenxi,Wang Jue,Liu Tian

Abstract

GoalBrain functional networks (BFNs) constructed using resting-state functional magnetic resonance imaging (fMRI) have proven to be an effective way to understand aberrant functional connectivity in autism spectrum disorder (ASD) patients. It is still challenging to utilize these features as potential biomarkers for discrimination of ASD. The purpose of this work is to classify ASD and normal controls (NCs) using BFNs derived from rs-fMRI.MethodsA deep learning framework was proposed that integrated convolutional neural network (CNN) and channel-wise attention mechanism to model both intra- and inter-BFN associations simultaneously for ASD diagnosis. We investigate the effects of each BFN on performance and performed inter-network connectivity analysis between each pair of BFNs. We compared the performance of our CNN model with some state-of-the-art algorithms using functional connectivity features.ResultsWe collected 79 ASD patients and 105 NCs from the ABIDE-I dataset. The mean accuracy of our classification algorithm was 77.74% for classification of ASD versus NCs.ConclusionThe proposed model is able to integrate information from multiple BFNs to improve detection accuracy of ASD.SignificanceThese findings suggest that large-scale BFNs is promising to serve as reliable biomarkers for diagnosis of ASD.

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology

Reference77 articles.

1. Principal component analysis.;Abdi;WIREs Comput. Stat.,2010

2. The effect of model order selection in group PICA.;Abou-Elseoud;Hum. Brain Mapp.,2010

3. Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example.;Abraham;Neuroimage,2017

4. Reduced cognitive control of response inhibition by the anterior cingulate cortex in autism spectrum disorders.;Agam;Neuroimage,2010

5. Connectivity learning in multi-branch networks.;Ahmed;arXiv,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3