Development of a Sensing Platform Based on Hands-Free Interfaces for Controlling Electronic Devices

Author:

Rojas Mario,Ponce Pedro,Molina Arturo

Abstract

Hands-free interfaces are essential to people with limited mobility for interacting with biomedical or electronic devices. However, there are not enough sensing platforms that quickly tailor the interface to these users with disabilities. Thus, this article proposes to create a sensing platform that could be used by patients with mobility impairments to manipulate electronic devices, thereby their independence will be increased. Hence, a new sensing scheme is developed by using three hands-free signals as inputs: voice commands, head movements, and eye gestures. These signals are obtained by using non-invasive sensors: a microphone for the speech commands, an accelerometer to detect inertial head movements, and an infrared oculography to register eye gestures. These signals are processed and received as the user's commands by an output unit, which provides several communication ports for sending control signals to other devices. The interaction methods are intuitive and could extend boundaries for people with disabilities to manipulate local or remote digital systems. As a study case, two volunteers with severe disabilities used the sensing platform to steer a power wheelchair. Participants performed 15 common skills for wheelchair users and their capacities were evaluated according to a standard test. By using the head control they obtained 93.3 and 86.6%, respectively for volunteers A and B; meanwhile, by using the voice control they obtained 63.3 and 66.6%, respectively. These results show that the end-users achieved high performance by developing most of the skills by using the head movements interface. On the contrary, the users were not able to develop most of the skills by using voice control. These results showed valuable information for tailoring the sensing platform according to the end-user needs.

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology

Reference49 articles.

1. A simplistic approach to design a prototype of smart home for the activation of home appliances based on Electrooculography(EOG);Akanto,2020

2. Voice recognition and inverse kinematics control for a redundant manipulator based on a multilayer artificial intelligence network;Anh;J. Robot.,2021

3. Eye and voice-controlled human machine interface system for wheelchairs using image gradient approach;Anwer;Sensors,2020

4. UNO R3 ∣ Arduino Documentation2022

5. A scoping review of powered wheelchair driving tasks and performance-based outcomes;Bigras;Disabil. Rehabil.,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3