A Hybrid Brain-Computer Interface Based on Visual Evoked Potential and Pupillary Response

Author:

Jiang Lu,Li Xiaoyang,Pei Weihua,Gao Xiaorong,Wang Yijun

Abstract

Brain-computer interface (BCI) based on steady-state visual evoked potential (SSVEP) has been widely studied due to the high information transfer rate (ITR), little user training, and wide subject applicability. However, there are also disadvantages such as visual discomfort and “BCI illiteracy.” To address these problems, this study proposes to use low-frequency stimulations (12 classes, 0.8–2.12 Hz with an interval of 0.12 Hz), which can simultaneously elicit visual evoked potential (VEP) and pupillary response (PR) to construct a hybrid BCI (h-BCI) system. Classification accuracy was calculated using supervised and unsupervised methods, respectively, and the hybrid accuracy was obtained using a decision fusion method to combine the information of VEP and PR. Online experimental results from 10 subjects showed that the averaged accuracy was 94.90 ± 2.34% (data length 1.5 s) for the supervised method and 91.88 ± 3.68% (data length 4 s) for the unsupervised method, which correspond to the ITR of 64.35 ± 3.07 bits/min (bpm) and 33.19 ± 2.38 bpm, respectively. Notably, the hybrid method achieved higher accuracy and ITR than that of VEP and PR for most subjects, especially for the short data length. Together with the subjects’ feedback on user experience, these results indicate that the proposed h-BCI with the low-frequency stimulation paradigm is more comfortable and favorable than the traditional SSVEP-BCI paradigm using the alpha frequency range.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3