Author:
Feng Jin,Li Yunde,Jiang Chengliang,Liu Yu,Li Mingxin,Hu Qinghui
Abstract
IntroductionElectroencephalogram (EEG)-based motor imagery (MI) classification is an important aspect in brain-computer interfaces (BCIs), which bridges between neural system and computer devices decoding brain signals into recognizable machine commands. However, due to the small number of training samples of MI electroencephalogram (MI-EEG) for a single subject and the great individual differences of MI-EEG among different subjects, the generalization and accuracy of the model on the specific MI task may be poor.MethodsTo solve these problems, an adaptive cross-subject transfer learning algorithm is proposed, which is based on kernel mean matching (KMM) and transfer learning adaptive boosting (TrAdaBoost) method. First, the common spatial pattern (CSP) is used to extract the spatial features. Then, in order to make the feature distribution more similar among different subjects, the KMM algorithm is used to compute a sample weight matrix for aligning the mean between source and target domains and reducing distribution differences among different subjects. Finally, the sample weight matrix from KMM is used as the initialization weight of TrAdaBoost, and then TrAdaBoost is used to adaptively select source domain samples that are closer to the target task distribution to assist in building a classification model.ResultsIn order to verify the effectiveness and feasibility of the proposed method, the algorithm is applied to BCI Competition IV datasets and in-house datasets. The results show that the average classification accuracy of the proposed method on the public datasets is 89.1%, and the average classification accuracy on the in-house datasets is 80.4%.DiscussionCompared with the existing methods, the proposed method effectively improves the classification accuracy of MI-EEG signals. At the same time, this paper also applies the proposed algorithm to the in-house dataset, the results verify the effectiveness of the algorithm again, and the results of this study have certain clinical guiding significance for brain rehabilitation.
Subject
Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology
Reference28 articles.
1. A novel approach for band selection using virtual dimensionality estimate and principal component analysis for satellite image classification.;Ahuja;Int. J. Intell. Inf. Technol.,2022
2. Filter bank common spatial pattern algorithm on BCI competition IV Datasets 2a and 2b.;Ang;Front. Neurosci.,2012
3. Weighted transfer learning for improving motor imagery-based brain-computer interface.;Azab;IEEE Trans. Neural Syst. Rehabil. Eng.,2019
4. The BCI competition III: Validating alternative approachs to actual BCI problems.;Blankertz;IEEE Trans. Neural Syst. Rehabil. Eng.,2006
5. Epileptic classification with deep-transfer-learning-based feature fusion algorithm.;Cao;IEEE Trans. Cogn. Dev. Syst.,2021
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献