An Online Data Visualization Feedback Protocol for Motor Imagery-Based BCI Training

Author:

Duan Xu,Xie Songyun,Xie Xinzhou,Obermayer Klaus,Cui Yujie,Wang Zhenzhen

Abstract

Brain–computer interface (BCI) has developed rapidly over the past two decades, mainly due to advancements in machine learning. Subjects must learn to modulate their brain activities to ensure a successful BCI. Feedback training is a practical approach to this learning process; however, the commonly used classifier-dependent approaches have inherent limitations such as the need for calibration and a lack of continuous feedback over long periods of time. This paper proposes an online data visualization feedback protocol that intuitively reflects the EEG distribution in Riemannian geometry in real time. Rather than learning a hyperplane, the Riemannian geometry formulation allows iterative learning of prototypical covariance matrices that are translated into visualized feedback through diffusion map process. Ten subjects were recruited for MI-BCI (motor imagery-BCI) training experiments. The subjects learned to modulate their sensorimotor rhythm to centralize the points within one category and to separate points belonging to different categories. The results show favorable overall training effects in terms of the class distinctiveness and EEG feature discriminancy over a 3-day training with 30% learners. A steadily increased class distinctiveness in the last three sessions suggests that the advanced training protocol is effective. The optimal frequency band was consistent during the 3-day training, and the difference between subjects with good or low MI-BCI performance could be clearly observed. We believe that the proposed feedback protocol has promising application prospect.

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology

Reference32 articles.

1. Large-scale assessment of a fully automatic co-adaptive motor imagery-based brain computer interface.;Acqualagna;PLoS One,2016

2. Open-vibe: a three dimensional platform for real-time neuroscience.;Arrouët;J. Neurother.,2005

3. The riemannian potato: an automatic and adaptive artifact detection method for online experiments using riemannian geometry;Barachant;Proceedings of the TOBI Workshop lV

4. Multiclass brain-computer interface classification by riemannian geometry.;Barachant;IEEE Trans. Biomed. Eng.,2012

5. Classification of covariance matrices using a riemannian-based kernel for bci applications.;Barachant;Neurocomputing

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3