Influence of spatial frequency in visual stimuli for cVEP-based BCIs: evaluation of performance and user experience

Author:

Fernández-Rodríguez Álvaro,Martínez-Cagigal Víctor,Santamaría-Vázquez Eduardo,Ron-Angevin Ricardo,Hornero Roberto

Abstract

Code-modulated visual evoked potentials (c-VEPs) are an innovative control signal utilized in brain-computer interfaces (BCIs) with promising performance. Prior studies on steady-state visual evoked potentials (SSVEPs) have indicated that the spatial frequency of checkerboard-like stimuli influences both performance and user experience. Spatial frequency refers to the dimensions of the individual squares comprising the visual stimulus, quantified in cycles (i.e., number of black-white squares pairs) per degree of visual angle. However, the specific effects of this parameter on c-VEP-based BCIs remain unexplored. Therefore, the objective of this study is to investigate the role of spatial frequency of checkerboard-like visual stimuli in a c-VEP-based BCI. Sixteen participants evaluated selection matrices with eight spatial frequencies: C001 (0 c/°, 1×1 squares), C002 (0.15 c/°, 2×2 squares), C004 (0.3 c/°, 4×4 squares), C008 (0.6 c/°, 8×8 squares), C016 (1.2 c/°, 16×16 squares), C032 (2.4 c/°, 32×32 squares), C064 (4.79 c/°, 64×64 squares), and C128 (9.58 c/°, 128×128 squares). These conditions were tested in an online spelling task, which consisted of 18 trials each conducted on a 3×3 command interface. In addition to accuracy and information transfer rate (ITR), subjective measures regarding comfort, ocular irritation, and satisfaction were collected. Significant differences in performance and comfort were observed based on different stimulus spatial frequencies. Although all conditions achieved mean accuracy over 95% after 2.1 s of trial duration, C016 stood out in terms user experience. The proposed condition not only achieved a mean accuracy of 96.53% and 164.54 bits/min with a trial duration of 1.05s, but also was reported to be significantly more comfortable than the traditional C001 stimulus. Since both features are key for BCI development, higher spatial frequencies than the classical black-to-white stimulus might be more adequate for c-VEP systems. Hence, we assert that the spatial frequency should be carefully considered in the development of future applications for c-VEP-based BCIs.

Funder

Ministerio de Ciencia e Innovación

Agencia Estatal de Investigación

European Regional Development Fund

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology

Reference30 articles.

1. Controlling the false discovery rate: a practical and powerful approach to multiple testing;Benjamini;J. R. Stat. Soc. Ser. B Methodol.,1995

2. VEP-based brain-computer interfaces: time, frequency, and code modulations [Research Frontier];Bin;IEEE Comput. Intell. Mag.,2009

3. Asynchronous c-VEP communication tools-efficiency comparison of low-target, multi-target and dictionary-assisted BCI spellers;Gembler;Sci. Rep.,2020

4. A neural correlate of visual discomfort from flicker;Gentile;J. Vis.,2020

5. Optimal pseudorandom sequence selection for online c-VEP based BCI control applications;Isaksen;PLoS ONE,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3