A Fusion-Based Technique With Hybrid Swarm Algorithm and Deep Learning for Biosignal Classification

Author:

Prabhakar Sunil Kumar,Rajaguru Harikumar,Kim Chulho,Won Dong-Ok

Abstract

The vital data about the electrical activities of the brain are carried by the electroencephalography (EEG) signals. The recordings of the electrical activity of brain neurons in a rhythmic and spontaneous manner from the scalp surface are measured by EEG. One of the most important aspects in the field of neuroscience and neural engineering is EEG signal analysis, as it aids significantly in dealing with the commercial applications as well. To uncover the highly useful information for neural classification activities, EEG studies incorporated with machine learning provide good results. In this study, a Fusion Hybrid Model (FHM) with Singular Value Decomposition (SVD) Based Estimation of Robust Parameters is proposed for efficient feature extraction of the biosignals and to understand the essential information it has for analyzing the brain functionality. The essential features in terms of parameter components are extracted using the developed hybrid model, and a specialized hybrid swarm technique called Hybrid Differential Particle Artificial Bee (HDPAB) algorithm is proposed for feature selection. To make the EEG more practical and to be used in a plethora of applications, the robust classification of these signals is necessary thereby relying less on the trained professionals. Therefore, the classification is done initially using the proposed Zero Inflated Poisson Mixture Regression Model (ZIPMRM) and then it is also classified with a deep learning methodology, and the results are compared with other standard machine learning techniques. This proposed flow of methodology is validated on a few standard Biosignal datasets, and finally, a good classification accuracy of 98.79% is obtained for epileptic dataset and 98.35% is obtained for schizophrenia dataset.

Funder

Department of Artificial Intelligence, Korea University

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3