The role of brain-localized gamma and alpha oscillations in inattentional deafness: implications for understanding human attention

Author:

Callan Daniel E.,Fukada Takashi,Dehais Frédéric,Ishii Shin

Abstract

IntroductionThe processes involved in how the attention system selectively focuses on perceptual and motor aspects related to a specific task, while suppressing features of other tasks and/or objects in the environment, are of considerable interest for cognitive neuroscience. The goal of this experiment was to investigate neural processes involved in selective attention and performance under multi-task situations. Several studies have suggested that attention-related gamma-band activity facilitates processing in task-specific modalities, while alpha-band activity inhibits processing in non-task-related modalities. However, investigations into the phenomenon of inattentional deafness/blindness (inability to observe stimuli in non-dominant task when primary task is demanding) have yet to observe gamma-band activity.MethodsThis EEG experiment utilizes an engaging whole-body perceptual motor task while carrying out a secondary auditory detection task to investigate neural correlates of inattentional deafness in natural immersive high workload conditions. Differences between hits and misses on the auditory detection task in the gamma (30–50 Hz) and alpha frequency (8–12 Hz) range were carried out at the cortical source level using LORETA.ResultsParticipant auditory task performance correlated with an increase in gamma-band activity for hits over misses pre- and post-stimulus in left auditory processing regions. Alpha-band activity was greater for misses relative to hits in right auditory processing regions pre- and post-stimulus onset. These results are consistent with the facilitatory/inhibitory role of gamma/alpha-band activity for neural processing. Additional gamma- and alpha-band activity was found in frontal and parietal brain regions which are thought to reflect various attentional monitoring, selection, and switching processes.DiscussionThe results of this study help to elucidate the role of gamma and alpha frequency bands in frontal and modality-specific regions involved with selective attention in multi-task immersive situations.

Funder

New Energy and Industrial Technology Development Organization

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology

Reference80 articles.

1. Selection for action: Some behavioral and neurophysiological considerations of attention and action;Allport,1987

2. Brain Function and Oscillations

3. The PREP pipeline: standardized preprocessing for large-scale EEG analysis;Bigdely-Shamlo;Front. Neuroinform.,2015

4. From behavior to neural dynamics: an integrated theory of attention;Buschman;Neuron,2015

5. Dynamic visuomotor transformation involved with remote flying of a plane utilizes the ‘Mirror Neuron' system;Callan;PLoS ONE,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3