Author:
Aldayel Mashael,Ykhlef Mourad,Al-Nafjan Abeer
Abstract
Neuromarketing has gained attention to bridge the gap between conventional marketing studies and electroencephalography (EEG)-based brain-computer interface (BCI) research. It determines what customers actually want through preference prediction. The performance of EEG-based preference detection systems depends on a suitable selection of feature extraction techniques and machine learning algorithms. In this study, We examined preference detection of neuromarketing dataset using different feature combinations of EEG indices and different algorithms for feature extraction and classification. For EEG feature extraction, we employed discrete wavelet transform (DWT) and power spectral density (PSD), which were utilized to measure the EEG-based preference indices that enhance the accuracy of preference detection. Moreover, we compared deep learning with other traditional classifiers, such as k-nearest neighbor (KNN), support vector machine (SVM), and random forest (RF). We also studied the effect of preference indicators on the performance of classification algorithms. Through rigorous offline analysis, we investigated the computational intelligence for preference detection and classification. The performance of the proposed deep neural network (DNN) outperforms KNN and SVM in accuracy, precision, and recall; however, RF achieved results similar to those of the DNN for the same dataset.
Subject
Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献