Effects of backward-directed resistance on propulsive force generation during split-belt treadmill walking in non-impaired individuals

Author:

Moradian Negar,Ko Mansoo,Hurt Christopher P.,Brown David A.

Abstract

IntroductionBackward-directed resistance is the resistance applied in the opposite direction of the individual’s walking motion. Progressive application of backward-directed resistance during walking at a target speed engages adaptive motor control to maintain that speed. During split-belt walking, a motor control strategy must be applied that allows the person to keep up with the two belts to maintain their position on the treadmill. This situation becomes more challenging when progressive resistance is applied since each limb needs to adapt to the greater resistance to maintain the position. We propose that strategies aimed at changing relative propulsion forces with each limb may explain the motor control strategy used. This study aimed to identify the changes in propulsive force dynamics that allow individuals to maintain their position while walking on an instrumented split-belt treadmill with progressively increasing backward-directed resistance.MethodsWe utilized an instrumented split-belt treadmill while users had to overcome a set of increasing backward-directed resistance through the center of mass. Eighteen non-impaired participants (mean age = 25.2 ± 2.51) walked against five levels of backward resistance (0, 5, 10, 15, and 20% of participant’s body weight) in two different modalities: single-belt vs. split-belt treadmill. On the single-belt mode, the treadmill’s pace was the participant’s comfortable walking speed (CWS). In split-belt mode, the dominant limb’s belt pace was half of the CWS, and the non-dominant limb’s belt speed was at the CWS.ResultsWe assessed differences between single-belt vs. split-belt conditions in the slope of the linear relationship between change in propulsive impulse relative to change of backward resistance amount. In split-belt conditions, the slower limb showed a significantly steeper increase in propulsion generation compared to the fast limb across resistance levels.DiscussionAs a possible explanation, the slow limb also exhibited a significantly increased slope of the change in trailing limb angle (TLA), which was strongly correlated to the propulsive impulse slope values. We conclude that the motor control strategy used to maintain position on a split-belt treadmill when challenged with backward-directed resistance is to increase the propulsive forces of the slow limb relative to the fast limb by progressively increasing the TLA.Clinical trial registrationClinicalTrials.gov, identifier NCT04877249.

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3