A Wearable Mixed Reality Platform to Augment Overground Walking: A Feasibility Study

Author:

Evans Emily,Dass Megan,Muter William M.,Tuthill Christopher,Tan Andrew Q.,Trumbower Randy D.

Abstract

Humans routinely modify their walking speed to adapt to functional goals and physical demands. However, damage to the central nervous system (CNS) often results in abnormal modulation of walking speed and increased risk of falls. There is considerable interest in treatment modalities that can provide safe and salient training opportunities, feedback about walking performance, and that may augment less reliable sensory feedback within the CNS after injury or disease. Fully immersive virtual reality technologies show benefits in boosting training-related gains in walking performance; however, they lack views of the real world that may limit functional carryover. Augmented reality and mixed reality head-mount displays (MR-HMD) provide partially immersive environments to extend the virtual reality benefits of interacting with virtual objects but within an unobstructed view of the real world. Despite this potential advantage, the feasibility of using MR-HMD visual feedback to promote goal-directed changes in overground walking speed remains unclear. Thus, we developed and evaluated a novel mixed reality application using the Microsoft HoloLens MR-HMD that provided real-time walking speed targets and augmented visual feedback during overground walking. We tested the application in a group of adults not living with disability and examined if they could use the targets and visual feedback to walk at 85%, 100%, and 115% of each individual’s self-selected speed. We examined whether individuals were able to meet each target gait speed and explored differences in accuracy across repeated trials and at the different speeds. Additionally, given the importance of task-specificity to therapeutic interventions, we examined if walking speed adjustment strategies were consistent with those observed during usual overground walking, and if walking with the MR-HMD resulted in increased variability in gait parameters. Overall, participants matched their overground walking speed to the target speed of the MR-HMD visual feedback conditions (all p-values > 0.05). The percent inaccuracy was approximately 5% across all speed matching conditions and remained consistent across walking trials after the first overall walking trial. Walking with the MR-HMD did not result in more variability in walking speed, however, we observed more variability in stride length and time when walking with feedback from the MR-HMD compared to walking without feedback. The findings offer support for mixed reality-based visual feedback as a method to provoke goal-specific changes in overground walking behavior. Further studies are necessary to determine the clinical safety and efficacy of this MR-HMD technology to provide extrinsic sensory feedback in combination with traditional treatments in rehabilitation.

Funder

National Institutes of Health

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3