AFM signal model for dysarthric speech classification using speech biomarkers

Author:

Shabber Shaik Mulla,Sumesh Eratt Parameswaran

Abstract

Neurological disorders include various conditions affecting the brain, spinal cord, and nervous system which results in reduced performance in different organs and muscles throughout the human body. Dysarthia is a neurological disorder that significantly impairs an individual's ability to effectively communicate through speech. Individuals with dysarthria are characterized by muscle weakness that results in slow, slurred, and less intelligible speech production. An efficient identification of speech disorders at the beginning stages helps doctors suggest proper medications. The classification of dysarthric speech assumes a pivotal role as a diagnostic tool, enabling accurate differentiation between healthy speech patterns and those affected by dysarthria. Achieving a clear distinction between dysarthric speech and the speech of healthy individuals is made possible through the application of advanced machine learning techniques. In this work, we conducted feature extraction by utilizing the Amplitude and frequency modulated (AFM) signal model, resulting in the generation of a comprehensive array of unique features. A method involving Fourier-Bessel series expansion is employed to separate various components within a complex speech signal into distinct elements. Subsequently, the Discrete Energy Separation Algorithm is utilized to extract essential parameters, namely the Amplitude envelope and Instantaneous frequency, from each component within the speech signal. To ensure the robustness and applicability of our findings, we harnessed data from various sources, including TORGO, UA Speech, and Parkinson datasets. Furthermore, the classifier's performance was evaluated based on multiple measures such as the area under the curve, F1-Score, sensitivity, and accuracy, encompassing KNN, SVM, LDA, NB, and Boosted Tree. Our analyses resulted in classification accuracies ranging from 85 to 97.8% and the F1-score ranging between 0.90 and 0.97.

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3