Fatigue factors and fatigue indices in SSVEP-based brain-computer interfaces: a systematic review and meta-analysis

Author:

Azadi Moghadam Maedeh,Maleki Ali

Abstract

BackgroundFatigue is a serious challenge when applying a steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) in the real world. Many researchers have used quantitative indices to study the effect of visual stimuli on fatigue. According to a wide range of studies in fatigue analysis, there are contradictions and inconsistencies in the behavior of fatigue indicators.New methodIn this study, for the first time, a systematic review and meta-analysis were performed on fatigue indices and fatigue caused by stimulation paradigm. We queried three scientific search engines for studies published between 2000 and 2022. The inclusion criteria were papers investigating mental and visual fatigue from performing a visual task using electroencephalogram (EEG) signals.ResultsAttractiveness and variation are the most effective ways to reduce BCI fatigue. Therefore, zoom motion, Newton’s ring motion, and cue patterns reduce fatigue. While the color of the cue could effectively reduce fatigue, its shape and background had no effect on fatigue. Additionally, the questionnaire and quantitative indicators such as frequency indices, signal-to-noise ratio (SNR), SSVEP amplitude, and multiscale entropy were utilized to assess fatigue. Meta-analysis indicated that when a person is fatigued, the spectrum amplitude of alpha, theta, and α+θ/β increase significantly, while SNR and SSVEP amplitude decrease significantly.ConclusionThe outcomes of this study can be used to design more optimal stimulation protocols that cause less fatigue. Moreover, the level of fatigue can be quantitatively assessed with indicators without the participant’s self-reports.

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3