The neurocognitive mechanism linking temperature and humidity with miners’ working memory: an fNIRS study

Author:

Tian Chenning,Li Hongxia,Tian Shuicheng,Tian Fangyuan,Yang Hailan

Abstract

BackgroundIn China’s coal mines, employees work in environments reaching depths of 650 m, with temperatures around 40°C and humidity levels as high as 90%, adversely affecting their health, safety capabilities, and cognitive functions, especially working memory. This study aims to explore different temperature and humidity conditions’ impact on neurocognitive mechanisms to enhance occupational health and safety.MethodsThis study, conducted between June and August 2023, with 100 coalmine workers from the Hongliulin Mining Group, utilized functional near infrared spectroscopy (fNIRS) and short-term visual memory tasks to evaluate the effects of high temperatures and humidity on working memory by monitoring activity in the cerebral cortex. Behavioral data, and neurophysiological data were analyzed using Tukey’s HSD for significant differences and multiple regression to explore the impact of temperature and humidity. The β-values of Oxy-Hb for different regions of interest were calculated using General liner model (GLM), and the activation maps were plotted by NIRS_KIT.ResultsHigh temperature and humidity (Condition IV) significantly depressed reaction times and working memory compared to other conditions, with temperature having a more pronounced impact than humidity on these cognitive measures (p < 0.05). Oxy-Hb concentration increased notably under Condition IV, emphasizing temperature’s influence on brain oxygen levels. ROI analysis revealed varied brain activation patterns. The activation of ROI A and B (prefrontal cortex) increased with the increase of temperature and humidity, while ROI C (supplementary motor area) was less sensitive to temperature, indicating the complex influence of environmental factors on brain function.ConclusionThis study highlights the important effects of temperature and humidity on cognitive performance and brain function, highlighting the need to optimize the environment of miners’ sites to improve productivity and safety.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3