Building an Open Source Classifier for the Neonatal EEG Background: A Systematic Feature-Based Approach From Expert Scoring to Clinical Visualization

Author:

Moghadam Saeed Montazeri,Pinchefsky Elana,Tse Ilse,Marchi Viviana,Kohonen Jukka,Kauppila Minna,Airaksinen Manu,Tapani Karoliina,Nevalainen Päivi,Hahn Cecil,Tam Emily W. Y.,Stevenson Nathan J.,Vanhatalo Sampsa

Abstract

Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e., the electroencephalograph (EEG) background activity. This needs development of bedside methods for an automated assessment of the EEG background activity. In this paper, we present development of the key components of a neonatal EEG background classifier, starting from the visual background scoring to classifier design, and finally to possible bedside visualization of the classifier results. A dataset with 13,200 5-minute EEG epochs (8–16 channels) from 27 infants with birth asphyxia was used for classifier training after scoring by two independent experts. We tested three classifier designs based on 98 computational features, and their performance was assessed with respect to scoring system, pre- and post-processing of labels and outputs, choice of channels, and visualization in monitor displays. The optimal solution achieved an overall classification accuracy of 97% with a range across subjects of 81–100%. We identified a set of 23 features that make the classifier highly robust to the choice of channels and missing data due to artefact rejection. Our results showed that an automated bedside classifier of EEG background is achievable, and we publish the full classifier algorithm to allow further clinical replication and validation studies.

Funder

H2020 Marie Skłodowska-Curie Actions

Suomalainen Tiedeakatemia

Suomen Aivosäätiö

Canadian Institutes of Health Research

National Institutes of Health

Hospital for Sick Children

National Health and Medical Research Council

Lastentautien Tutkimussäätiö

Sigrid Juséliuksen Säätiö

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology

Reference53 articles.

1. Grading hypoxic–ischemic encephalopathy severity in neonatal EEG using GMM supervectors and the support vector machine.;Ahmed;Clin. Neurophysiol.,2016

2. Improved multi-stage neonatal seizure detection using a heuristic classifier and a data-driven post-processor.;Ansari;Clin. Neurophysiol.,2016

3. A convolutional neural network outperforming state-of-the-art sleep staging algorithms for both preterm and term infants.;Ansari;J. Neural Eng.,2020

4. Self-supervised representation learning from electroencephalography signals;Banville;Proceedings of the 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP),2019

5. Uncovering the structure of clinical EEG signals with self-supervised learning.;Banville;J. Neural Eng.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3