Prediction of ground reaction forces and moments during walking in children with cerebral palsy

Author:

Kloeckner Julie,Visscher Rosa M. S.,Taylor William R.,Viehweger Elke,De Pieri Enrico

Abstract

IntroductionGait analysis is increasingly used to support clinical decision-making regarding diagnosis and treatment planning for movement disorders. As a key part of gait analysis, inverse dynamics can be applied to estimate internal loading conditions during movement, which is essential for understanding pathological gait patterns. The inverse dynamics calculation uses external kinetic information, normally collected using force plates. However, collection of external ground reaction forces (GRFs) and moments (GRMs) can be challenging, especially in subjects with movement disorders. In recent years, a musculoskeletal modeling-based approach has been developed to predict external kinetics from kinematic data, but its performance has not yet been evaluated for altered locomotor patterns such as toe-walking. Therefore, the goal of this study was to investigate how well this prediction method performs for gait in children with cerebral palsy.MethodsThe method was applied to 25 subjects with various forms of hemiplegic spastic locomotor patterns. Predicted GRFs and GRMs, in addition to associated joint kinetics derived using inverse dynamics, were statistically compared against those based on force plate measurements.ResultsThe results showed that the performance of the predictive method was similar for the affected and unaffected limbs, with Pearson correlation coefficients between predicted and measured GRFs of 0.71–0.96, similar to those previously reported for healthy adults, despite the motor pathology and the inclusion of toes-walkers within our cohort. However, errors were amplified when calculating the resulting joint moments to an extent that could influence clinical interpretation.ConclusionTo conclude, the musculoskeletal modeling-based approach for estimating external kinetics is promising for pathological gait, offering the possibility of estimating GRFs and GRMs without the need for force plate data. However, further development is needed before implementation within clinical settings becomes possible.

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology

Reference59 articles.

1. Increased femoral anteversion does not lead to increased joint forces during gait in a cohort of adolescent patients.;Alexander;Front. Bioeng. Biotechnol.,2022

2. 4 - Introduction to musculoskeletal modelling;Andersen;Computational modelling of biomechanics and biotribology in the musculoskeletal system,2021

3. Kinematic analysis of over-determinate biomechanical systems.;Andersen;Comput. Methods Biomech. Biomed. Eng.,2009

4. Gait analysis in children with cerebral palsy.;Armand;EFORT Open Rev.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3