Functional Brain Network Analysis of Knowledge Transfer While Engineering Problem-Solving

Author:

Wang Fuhua,Jiang Zuhua,Li Xinyu,Bu Lingguo,Ji Yongjun

Abstract

As a complex cognitive activity, knowledge transfer is mostly correlated to cognitive processes such as working memory, behavior control, and decision-making in the human brain while engineering problem-solving. It is crucial to explain how the alteration of the functional brain network occurs and how to express it, which causes the alteration of the cognitive structure of knowledge transfer. However, the neurophysiological mechanisms of knowledge transfer are rarely considered in existing studies. Thus, this study proposed functional connectivity (FC) to describe and evaluate the dynamic brain network of knowledge transfer while engineering problem-solving. In this study, we adopted the modified Wisconsin Card-Sorting Test (M-WCST) reported in the literature. The neural activation of the prefrontal cortex was continuously recorded for 31 participants using functional near-infrared spectroscopy (fNIRS). Concretely, we discussed the prior cognitive level, knowledge transfer distance, and transfer performance impacting the wavelet amplitude and wavelet phase coherence. The paired t-test results showed that the prior cognitive level and transfer distance significantly impact FC. The Pearson correlation coefficient showed that both wavelet amplitude and phase coherence are significantly correlated to the cognitive function of the prefrontal cortex. Therefore, brain FC is an available method to evaluate cognitive structure alteration in knowledge transfer. We also discussed why the dorsolateral prefrontal cortex (DLPFC) and occipital face area (OFA) distinguish themselves from the other brain areas in the M-WCST experiment. As an exploratory study in NeuroManagement, these findings may provide neurophysiological evidence about the functional brain network of knowledge transfer while engineering problem-solving.

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Biological Psychiatry,Psychiatry and Mental health,Neurology,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3